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Signatures and Controlled Differential Equations

As we have already seen, the signature is a collection of features that
we can define from a continuous path X : [0, T ] → Rd (of finite length).

Definition (Depth-N Signature)
The depth-N signature transform of X over the interval [0, t] is given by

SigN0,t(X) =
({
S i0,t(X)

}d
i=1

,
{
S i, j0,t(X)

}d
i , j=1

, · · · ,
{
Si1 , ··· , iN0,t (X)

}d
i1,··· , iN=1

)
,

where
S i1,··· , ik0,t (X) =

∫
· · ·

∫
0<s1<s2<···<sk<t

dX i1s1 dX
i2
s2 · · ·dX

ik
sk .

We can extend the above to define the full path signature (i.e. N = ∞).
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Signatures and Controlled Differential Equations

Thus, it follows that different entries in the signature can be related as

S i1,··· , ik0,t (X) =
∫ t

0
S i1,··· , ik−1

0,s (X)dX iks .
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Definition (Controlled differential equation)
We say Y : [0, T] → Rn solves a Controlled Differential Equation (CDE) if

Yt = Y0 +
∫ t

0
f(Ys)dXs ,

where f : Rn → Rn×d and X : [0, T] → Rd.
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Signatures and Controlled Differential Equations

Thus, it follows that different entries in the signature can be related as

S i1,··· , ik0,t (X) =
∫ t

0
S i1,··· , ik−1

0,s (X)dX iks .

Definition (Controlled differential equation)
We say Y : [0, T] → Rn solves a Controlled Differential Equation (CDE) if

Yt = Y0 +
∫ t

0
f(Ys)dXs , (1)

where f : Rn → Rn×d and X : [0, T] → Rd. We often write (1) in the form:

dYt = f(Yt)dXt . (2)

Informal Theorem
“Path Signature + Linear Regression = Linear CDE”
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Neural Controlled Differential Equations (NCDEs)

Whilst CDEs encompass path signatures, they also extend ODEs since

Yt = Y0 +
∫ t

0
f(Ys)dXs = Y0 +

∫ t

0
f(Ys)

dXs
ds

ds.

That is, when X is continuously differentiable, a CDE can be written as

dYt
dt

= g(t,Yt), (3)

where g(t, y) = f(y) dX
dt .
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Yt = Y0 +
∫ t

0
f(Ys)dXs = Y0 +

∫ t

0
f(Ys)

dXs
ds

ds.

That is, when X is continuously differentiable, a CDE can be written as

dYt
dt

= g(t,Yt), (4)

where g(t, y) = f(y) dX
dt . Hence, we can learn f using the methodology in

References III
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Duvenaud. Neural Ordinary Differential Equations. NeurIPS 2018.
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Neural Controlled Differential Equations (NCDEs)

We observe x = ((t0, x0), (t1, x1), · · · , (tn, xn)), with ti ∈ R and xi ∈ Rd.
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Let X : [0,n] → Rd+1 be a continuous path that interpolates this data, so
X(i) = (ti, xi). (e.g. cubic splines [2] and piecewise linear/rectilinear [3])

The NCDEmodel involves learnt functions ζθ, fθ and a linear map ℓθ with

z(0) = ζθ(t0, x0), z(t) = z(0) +
∫ t

0
fθ(z(s))dX(s), (5)

and the output is either ℓθ(z(T)) or {ℓθ(z(t))}.
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We observe x = ((t0, x0), (t1, x1), · · · , (tn, xn)), with ti ∈ R and xi ∈ Rd.

Let X : [0,n] → Rd+1 be a continuous path that interpolates this data, so
X(i) = (ti, xi). (e.g. cubic splines [2] and piecewise linear/rectilinear [3])

The NCDEmodel involves learnt functions ζθ, fθ and a linear map ℓθ with

z(0) = ζθ(t0, x0), z(t) = z(0) +
∫ t

0
fθ(z(s))dX(s), (5)

and the output is either ℓθ(z(T)) or {ℓθ(z(t))}.

The CDE model (5) is discretized, the output is fed into a loss function
(L2, cross entropy, etc) and trained using stochastic gradient descent.

Here ζθ and fθ are neural nets, z is hidden state: Continuous Time RNN
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Neural Controlled Differential Equations (NCDEs)

CDEs are reparameterization invariant and well suited to tasks involving
(partially-observed and/or irregularly sampled) multivariate time series.

t1 t2 t3 · · · tn
Time

x1
x2 x3

xn Data x

Hidden state z

t1 t2 t3 · · · tn
Time

x1
x2 x3

xn Data x

Path X

Hidden state z

Figure 1: Some data process is observed at times t1, . . . , tn to give observations x1, . . . , xn. It is
otherwise unobserved. Left: Previous work has typically modified hidden state at each observation,
and perhaps continuously evolved the hidden state between observations. Right: In contrast, the
hidden state of the Neural CDE model has continuous dependence on the observed data.

3 Method

Suppose for simplicity that we have a fully-observed but potentially irregularly sampled time series
x = ((t0, x0), (t1, x1), . . . , (tn, xn)), with each ti ∈ R the timestamp of the observation xi ∈ Rv,
and t0 < · · · < tn. (We will consider partially-observed data later.)

Let X : [t0, tn] → Rv+1 be the natural cubic spline with knots at t0, . . . , tn such that Xti = (xi, ti).
As x is often assumed to be a discretisation of an underlying process, observed only through x,
then X is an approximation to this underlying process. Natural cubic splines have essentially the
minimum regularity for handling certain edge cases; see Appendix A for the technical details.

Let fθ : R
w → Rw×(v+1) be any neural network model depending on parameters θ. The value w is a

hyperparameter describing the size of the hidden state. Let ζθ : R
v+1 → Rw be any neural network

model depending on parameters θ.

Then we define the neural controlled differential equation model as the solution of the CDE

zt = zt0 +

∫ t

t0

fθ(zs)dXs for t ∈ (t0, tn], (3)

where zt0 = ζθ(x0, t0). This initial condition is used to avoid translational invariance. Analogous
to RNNs, the output of the model may either be taken to be the evolving process z, or the terminal
value ztn , and the final prediction should typically be given by a linear map applied to this output.

The resemblance between equations (1) and (3) is clear. The essential difference is that equation (3)
is driven by the data process X , whilst equation (1) is driven only by the identity function ι : R → R.
In this way, the Neural CDE is naturally adapting to incoming data, as changes in X change the local
dynamics of the system. See Figure 1.

3.1 Universal Approximation

It is a famous theorem in CDEs that in some sense they represent general functions on streams [22,
Theorem 4.2], [23, Proposition A.6]. This may be applied to show that Neural CDEs are universal
approximators, which we summarise in the following informal statement.

Theorem (Informal). The action of a linear map on the terminal value of a Neural CDE is a
universal approximator from {sequences in Rv} to R.

Theorem B.14 in Appendix B gives a formal statement and a proof, which is somewhat technical.
The essential idea is that CDEs may be used to approximate bases of functions on path space.

3.2 Evaluating the Neural CDE model

Evaluating the Neural CDE model is straightforward. In our formulation above, X is in fact not just
of bounded variation but is differentiable. In this case, we may define

gθ,X(z, s) = fθ(z)
dX

ds
(s), (4)

3

Figure: Illustration of the RNN and NCDE models (taken from [2]).
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NCDEs work! (and allow for memory-efficient training)

Model Test Accuracy Memory usage (Mb)
GRU-ODE 47.9% ± 2.9% 0.164
GRU-∆t 43.3% ± 33.9% 1.54
GRU-D 32.4% ± 34.8% 1.64

ODE-RNN 65.9% ± 35.6% 1.40
Neural CDE 89.8% ± 2.5% 0.167

Table: Speech Commands classification (regularly spaced, fully observed)

Model Test AUC Memory usage (Mb)
GRU-ODE 0.852 ± 0.010 454
GRU-∆t 0.878 ± 0.006 837
GRU-D 0.871 ± 0.022 889

ODE-RNN 0.874 ± 0.016 696
Neural CDE 0.880 ± 0.006 244

Table: PhysioNet Sepsis prediction (irregularly sampled, partially observed)
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Conclusion and related work

• Neural CDEs are a model for continuous paths (and time series),
at the intersection of Path Signatures, ODEs and Neural Networks
(enjoying the benefits of all three!)

• “Neural Rough Differential Equations for Long Time Series” [4]

• Subsequent applications:
– Reinforcement learning for healthcare [5]
– Continuous-time multiscale control in robotics [6]
– Modelling of counterfactual outcomes for healthcare [7]
– Signature-based autoencoder for feature extraction in NRDEs [8]
– CDE discriminator in GANs: Neural SDEs [9] and ECG Synthesis [10]

• Software available:
– https://github.com/patrick-kidger/torchcde
– https://github.com/patrick-kidger/diffrax
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Thank you
for your attention!
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